Descargar Libro: Entropías, Potenciales Y Linealización De Polinomios Hipergeométricos
Autores
Resumen del Libro
Los métodos que se describen en los capítulos 2 y 3 permiten obtener en primer lugar los coeficientes de inversión, conexión y linealización de los polinomios hipergeométricos directamente en términos de los coeficientes funcionales que caracterizan la ecuación diferencial de tales polinomios. Además se dan las expresiones explícitas de los coeficientes para las tres familias clásicas con ortogonalidad real (Hermite, Laguerre, Jacobi) y el caso clásico de ortogonalidad compleja (Bessel). Este método tiene una característica interesante: los coeficientes son en general expresados en forma de series hipergeométricas terminantes, lo que permite a menudo su evaluación explícita por medio de teoremas de sumación clásicos, y facilita el estudio de sus propiedades de signo haciendo uso de las correspondientes propiedades de la función factorial desplazada. En segundo lugar, se obtienen los coeficientes de expansión de una amplia gama de funciones hipergeométricas en serie de polinomios de Laguerre variantes con parámetro dependiente linealmente del grado. El método usado se basa en la teoría clásica de funciones hipergeométricas generalizadas, que ya fue utilizado para el caso de polinomios con ortogonalidad estándar por otros autores. Aquí se muestra su utilidad para el caso de ortogonalidad variante. Los resultados presentados han permitido el hallazgo de una función generatriz (que generaliza ampliamente las funciones de Brown, así como la fórmula de conexión para los polinomios de Laguerre variantes {L_{n}^{(an+&α)}(x)}. Además, para ilustrar la aplicabilidad de las fórmulas de conexión de polinomios variantes, se han resuelto los siguientes problemas de origen físico: (i) la conexión entre funciones de onda de tipo Morse de dos estados moleculares arbitrarios, (ii) el desarrollo de una función de onda Morse que describe un estado arbitrario molecular en términos de funciones de onda Pöschl-Teller, y (iii) la conexión entre…