Descargar Libro: Álgebra Lineal
Autores
Resumen del Libro
El libro Álgebra Lineal consta de siete capítulos y un apéndice. En el primer capítulo se estudian los Espacios Vectoriales desde un punto de vista abstracto, aunque poniendo cierto énfasis en el espacio real n-dimensional. Los conceptos de Subespacio Vectorial, Dependencia Lineal, Sistemas Generadores, Bases, Dimensión, el Método de Reducción y los subespacios Intersección y Suma se explican ofreciendo ejemplos ilustrativos. También se introduce el Espacio Vectorial Cociente. El segundo capítulo está dedicado a las Aplicaciones Lineales, Matrices y Determinantes. En él se explican los conceptos de Núcleo, Rango, Clasificación de aplicaciones lineales, así como los problemas de Cambios de Base tanto en espacios vectoriales como en aplicaciones lineales con las fórmulas matriciales correspondientes. La introducción del Espacio Dual resulta útil para comprender ciertas propiedades matriciales. En el capítulo tres se aplica todo lo anterior para estudiar y resolver Sistemas de Ecuaciones Lineales, con el Teorema de Rouché y la Regla de Cràmer como métodos estelares, pasando por el método de Eliminación de Paràmetros. Los capítulos cuatro y cinco se dedican a la obtención de matrices reducidas, es decir, con muchos coeficientes nulos, semejantes a una matriz cuadrada dada, es decir, la Diagonalización de Matrices y Endomorfismos, así como la Forma Canónica de Jordan. El Teorema de Cayley-Hamilton aparece como ejercicio. En el capítulo seis se hace uso de muchos de los resultados obtenidos en los anteriores capítulos para estudiar las Formas Bilineales y las Formas Cuadráticas. Se explica y demuestra el Criterio de Sylvester de los Determinantes Principales. El último capítulo se dedica al estudio de los Espacios Euclídeos, es decir, de aquellos que poseen un Producto Escalar, i.e., una forma bilineal simétrica positiva y no degenerada, cuya forma cuadrática asociada es el cuadrado de la Norma euclídea, lo que nos sirve …